

Course	Course Name	L-T-P -	Year of
code		Credits	Introduction
EE404	INDUSTRIAL INSTRUMENTATION AND	3-0-0-3	2016
	AUTOMATION		

Prerequisite: Nil

Course Objectives

• To impart knowledge about Industrial instrumentation and automation

Syllabus:

Dynamic characteristic of instrumentation- Transducers: Characteristics, Applications – Nano instrumentation - signal conditioning, MEMS, Virtual instrumentation-Automation system - actuators – sequence control, PLC

Expected Outcome:

After the completion of the course, the students will be able to:

- i. Select instruments and transducers for various physical variables.
- ii. Get an insight on data acquisition, processing and monitoring system
- iii. Design various signal conditioning systems for transducers.
- iv. Analyze dynamic responses of various systems.
- v. Get the concepts of virtual instrumentation
- vi. Understand the programming realization of PLC

Text books:

- 1. Curtis D Johnson," Process Control Instrumentation Technology", PHI, 1986
- 2. Doeblin E.O, 'Measurement Systems: Application and Design, Fourth Edition, McGraw Hill, Newyork, 1992
- 3. DVS. Murty, 'Transducers and Instrumentation' Second Edition, PHI Learning Pvt Ltd New Delhi ,2013
- 4. Madhuchhanda Mitra, Samarjit Sengupta, 'Programmable Logic Controllers and Industrial Automation An Introduction', Penram International Publishing (India) Pvt Ltd., 2009
- 5. Mickell. P. Groover 'Automation, Production and computer integrated manufacturing' Prentice Hall of India, 1992
- 6. Patranabis, D., 'Principles of Industrial Instrumentation', Second Edition Tata McGraw Hill Publishing Co. Ltd.. New Delhi
- 7. Robert B. Northrop, 'Introduction to instrumentation and measurements', CRC, Taylor and Francis 2005

References:

- 1. G.K.McMillan, 'Process/Industrial Instrument and control and hand book' McGraw Hill, New York,1999
- 2. Michael P .Lucas, 'Distributed Control system', Van Nastrant Reinhold Company, New York

Course I	Plan
----------	------

Module	Contents	Hours	Sem. Exam Marks
I	Introduction to Process Control - block diagram of process control loop, definition of elements. Sensor time response - first and second order responses. Review of Transducers: Characteristics and Choice of transducer-	6	15%

	factors influencing choice of transducer		
	Applications of Transducers		
	Displace measurement: Resistance potentiometer, Capacitive and		15%
	Inductive. Capacitive differential pressure measurement	8	
II	Torsional, shearing stress and rotating shaft Torque measurement		
	using strain gauge. Flow measurement :Hotwire anemometer,		
	constant resistance Constant current type Eddy current sensors,		
	Variable reluctance tachometers	V.I	
	Phase measurement : Analog and digital phase detectors	T	
	Nano Instrumentation		
1	FIRST INTERNAL EXAMINATION		
III	Signal conditioning circuits-Instrumentation amplifiers-	7	15%
	Unbalanced bridge. Bridge linearization using op amp		
	Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation		
	amplifier, Switched capacitor circuits, Phase sensitive detectors,		
	Noise problem in instrumentation and its minimisation		
	Micro Electromechanical system (MEMS)	7	15%
	Advantages and Applications, MEMS micro sensors and actuators,		
	Manufacturing process: Bulk micro machining and surface		
IV	micromachining, MEMS accelerometers		
	Virtual instrumentation system: architecture of virtual instruments		
	- Virtual instruments and traditional instruments - concepts of		
	graphical programming		
	SECOND INTERNAL EXAMINATION		
	Overview of Automation System - Architecture of Industrial		
	Automation Systems, Different devices used in Automation	_	•
V	Actuators, definition, types, selection.	7	20%
	Pneumatic, Hydraulic, Electrical, Electro-Pneumatic and valves,		
	shape memory alloys		
	Introduction to Sequence Control, PLCs - Working, Specifications		
VI	of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC,	7	20%
	Relay Ladder Logic- PLC Programming- realization of AND, OR		
	logic, concept of latching, Introduction to Timer/Counters,		
	Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.